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Final Technical Report 
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Anthony M. Bloch 
My work over the period of the grant includes analysis of the stability of mechanical and 

fluid systems in the presence of dissipation; work on the geometry, control and stabilization 
of systems with nonholonomic constraints; work on optimal control; work on the geometry of 
certain PDE's; and work on the stabilization of systems arising in anti-corrosion processes. 

With Krishnaprasad, Marsden and Ratiu, I have been analyzing the stability of mechan- 
ical systems with symmetries and, in particular, the effect that dissipative perturbations 
have on gyroscopically stable equilibria, that is, equilibria which are spectrally stable but 
have indefinite second variation of the augmented Hamiltonian. In earlier work we consid- 
ered dissipation in internal or vibrational variables. Recently we have considered dissipation 
or damping in rotational variables as well. This leads us to a type of dissipation in double 
bracket form. 

To demonstrate the type of dissipative mechanism we have in mind, we now give a 
simple example of it for the rigid body. Here the underlying space is that of the rotation 
group, that is, Euclidean three-space K3 interpreted as the space of body angular velocities 
ti equipped with the cross product as the Lie bracket. On this space, we put the standard 
kinetic energy Lagrangian L(Sl) = |(Jfl) • ft where I is the moment of inertia tensor. The 
equations for a freely spinning rigid body in terms of the body angular momentum M = Id 
are M = M x ft.   Now we modify the equations by adding a term cubic in the angular 

velocity: 
M = Mxft + aMx(Mxn), 

where a is a positive constant. 
One can check that the addition of the dissipative term has a number of interesting 

properties. First of all, this dissipation is derivable from an 50(3)-invariant force field, but 
it is not induced by any Rayleigh dissipation function in the literal sense. However, it is 
induced by a Rayleigh dissipation function in the following sense: it is a gradient when 
restricted to each momentum sphere. One can view this as a low dimensional model for a 
satellite with ring damping say, and one can show that spin about the minor axis is unstable 
in this case (as well as spin about the intermediate axis as usual). This procedure in fact 
gives us a good general method for modeling systems where certain conserved quantities 
such as momentum are respected by the damping. 

Another interesting system we have considered is a satellite with momentum wheels. 
We have derived a number of general stability and instablity results for systems of this type 
where we can handle both dissipation in the wheels and damping of the overall motion. 

One can induce similar dissipation in a perfect fluid: 

^. + v.Vv = -Vp (1.1) 
ot 

where v is the velocity field, assumed divergence free and parallel to the boundary of the 
fluid container, and where p is the pressure. With dissipation the equations become: 

| + t,.VV = -VP + ap((A(^)") (1.2) 



where a is a positive constant, P is the Hodge projection onto the divergence free part, 

and where u(v) = P ( (i't,u
b) ). The flat and sharp symbols denote the index lowering 

and raising operators induced by the metric, i.e. the operators that convert vectors to one 
forms and vice versa. 

With Krishnaprasad, Marsden and Murray I have been studying the geometry and 
dynamics of mechanical systems with nonholonomic constraints. Such constraints arise in 
many important mechanical systems including robotic systems. In many cases the equations 
of motion are of the form 

±(dL\_dL1= (dL\ (1 3) 

where Lc is the Lagrangian with the constraints substituted and the /3's are curvature terms. 
Given a symmetry in the problem and defining the nonholonomic momentum map to be 

we showed one gets generalized conservation laws of the form 

dJl _ dL 
~dT~ dtf I«'» (1.5) 

which are useful for analyzing both the dynamics and control. In particular it enables 
one to relate dynamics in the variables directly controlled to the induced dynamics of the 
remaining variables. In local coordinates the momentum equation may be written in the 
form 

al c=l 1=1 c=m+l t,/=l Uq 

which is a generalization of a parallel transport equation and reduces to one in special 
cases. I have also been studying the control coupling that arises in such equations with 
my student Scott Gray. In related work my student Dmitry Zenkov has been studying 
integrable nonholonomic systems and has shown that certain such systems exhibit periodic 
behavior in similar fashion to holonomic integrable Hamiltonian systems. 

With McClamroch and Reyhanoglu I have been studying nonholonomic nonlinear con- 
trol systems of the form 

i = /(x,z) + 23fir,(x,z)ui, (1.7) 

y = h(x,z), (1-8) 

z = S(y,z)y. (1-9) 

We are able to derive controllability results for a general class of systems of this type, i.e. 
systems where the base (x,y) dynamics is input output decouplable. Such systems occur, 



for example, when one takes into account actuator dynamics in a nonlinear control system 
and thus are useful for a detailed analysis of a mechanical system. Our results used some 
work of Coron and of Sussmann on dynamic extensions. 

With Drakunov, I have been studying stabilization of nonholonomic control systems by 
nonsmooth feedback (such systems are never smoothly stabilizable). Using sliding mode 
type techniques we have been able to design a stabilizer for Brockett 's fundamental example 
(the Heisenberg system): 

x = u 

y = v 

z   =    xv — yu. (1-10) 

The control law is (up to a constant factor) 

u   =    -x + ysign(z) 

v   =    —y-xsign(z). (1-H) 

We can show that with this feedback the condition for the system to be stabilized is 

i[x2(0) + t/2(0)]>|z(0)|. (1.12) 

This is a paraboloid in the phase space, but within the paraboloid we showed that one 
can use constant feedback to emerge from the parabloid, thus giving a globally stablizing 
controller. Simulation results for this system are very good. We have extended this result 
to more general classes of systems, in particular to all zero drift control systems which 
axe linearly uncontrollable, but are nonlinearly controllable and are of nonholonomy degree 
one. This is a large and very important class of canonical systems first identified by Roger 

Brockett. 

With Crouch and Ratiu I have been studying various aspects of optimal control both 
for nonholonomic systems and for more general nonlinear control systems. In particular 
we have analyzed the so called subRiemannian rigid body problem which corresponds to 
optimal control of a system on 50(3) where one has only two controls. We were able to 
give a Lagrangian method for deriving the optimal controls and relate it to the Hamiltonian 
picture, and to the theory of integrable Hamiltonian systems. For a general class of systems 
with symmetries, where there is a smaller number of controls than the dimension of the state 
space, we showed one gets optimal control equations of the form JV = [Q, V], Q = [JV, V\. 
Here V represents the state variables and Q the costate variables. These are particularly 
amenable to explicit analysis. More recently, with Crouch I have extended these results to 
the analysis of the optimal control of a broad class of nonlinear control systems. Our key 
idea was to apply Lagrangian reduction techniques to constrained Lagrangians of the form 

A(x, x, A) = I(x, x) + AT$(x, A). 

In particular we related the optimal control equations to the Lie-Poisson and Euler-Poincare 
equations of classical mechanics. This provides a singular extension of the recent Lagrangian 



reduction analysis of Marsden and Scheurle. I also analyzed the optimal control of certain 
finite- and infinite-dimensional systems on adjoint orbits, showing how the optimal control 
equations were in double bracket form and extending work of Roger Brocke« in this regard. 
We have also demonstrated that some of these optimal control problems are explicitly 
solvable. More recently we have analyzed higher order optimal control problems of this 

type. 

With Alan Markworth and other workers at Batelle labs I have been examining the 
control of systems associated with anti-corrosion processes. This is both useful from a 
technological p^:-i of view and interesting from a theoretical point of view as the free 
system contains, in general, a strange attractor and exhibits chaotic behavior. We have 
been able to stabilize this system using classical control methods as well as more modern 
methods employing saddle-point structures. In particular, in the case of a two dimensional 
model, we were able to drive the system from a periodic attractor to a previously unstable 
saddle point. In this case the nonlinear equations describing the system take the form 

§   =   Y(l-0)-9e-ße (1.13) 

Y   =   P(l-6)-qY (1.14) 

Here we can control the paramter p via changing an anodic potential. 

With Brockett, Flaschka and Ratiu I have been studying certain partial differential 
equations associated with the group of measure preserving diffeomorphisms of the annulus. 
This leads to systems which exhibit shocks, and the notion of measure-valued solutions, and 
to a number of interesting connections with fluid flows in two dimensions and ideas from 
control theory. This work extends our other work on integrable finite-dimensional dynamical 
systems such as the Toda lattice flow and their connections with gradient flows, steepest 
descent equations and various discrete algorithms, such as the QR algorithm and linear 
programming. The key in these finite-dimensional results was the existence of a polytope 
which made the link between the mechanical system and linear programming. This link was 
made via the geometry of the moment map. For our infinite-dimensional systems we proved 
the existence of a similar, but in this case, infinite-dimensional, polytope. The key equation 
in this setting takes the form of the gradient flow of the function H(x(z,0)) = -(x(z,0),z) 
on an orbit of of the group of diffeomorphims and is explicitly given by 

xt(z, 0, t) = {*(*, 0, *), {x(z, 0, t), z}} . 

This equation can in fact be shown to solve an infinite-dimensinal linear programming 
problem over a suitably defined polytope. The equilibria of the equation lie at the vertices 
of this polytope and corresond to equimeasureable rearrangements of the function x(z,t). 

In a special case these equations become the pair of hyperbolic equations in two depen- 
dent variables n n „ 

dv _   du du_   dv2 

~di~V~d~z'        dt~    dz " 



These special equations are very interesting, being a direct generalization of the finite 
Toda lattice equations. They are also gradient-like, minimizing a suitable function, and are 
integrable. Further, like finite Toda, they possess a sorting property. 

With Kappeler and «workers I have studied related integrable equations, in particular 
the Korteweg de Vries equations, the periodic Toda lattice and the defocusing nonlinear 
Schroedinger equation. We showed that the phase spaces for these systems are diffeomorphic 
to that for decoupled harmonic oscillators, thus giving a very complete picture of their 
dynamics. 

Recently, with a postdoc I have been examining factoization solutions to such problems. 

Professional personel associated with the research effort: 
This grant has been supporting the graduate work of two graduate students at Ohio 

State: Scott Gray and Dmitry Zenkov (summer support and some some term support) and 
the collaborative research work of Sergey Drakunov, a postdoctoral research engineer at 
Ohio State. 
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